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without restrictions. Using U.S. stock prices from the CRSP database for the 1995–2011 period, this paper is the
first study that empirically determines the BPT optimal portfolio.We show that Shefrin and Statman's (2000) op-
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aversion coefficient of the BPTportfolio is up to 10 times lower than the risk aversion degree shownby typicalMV
investors. Even if the asset allocations may coincide, typical MV investors will not usually select the BPT optimal
portfolios. These results underline that MVT and BPT cannot be used interchangeably.
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1. Introduction

The characteristics of the optimal portfolio of investors is a key ques-
tion for both academia and financial practitioners. For several decades,
Markowitz's (1952) Mean Variance Theory (MVT) has been considered
as the cornerstone of modern portfolio theory. In MVT, asset allocation
by investors results from a trade-off between expected return and
variance. The optimal portfolio is a perfectly diversified portfolio that
exhibits the lowest risk for a given level of expected return. Since this
formulation, a number of studies (Cox and Huang, 1989; Li and Ng,
2000; Merton, 1971; Yao et al., 2014) have extended Markowitz's
(1952) framework by taking into account new elements such as
market incompleteness, labor income and dynamic formulation of the
model.1 However, experimental evidence (Allais, 1953; Kahneman
and Tversky, 1979) indicates that the standard expected utility, which
is the key assumption of Markowitz's (1952) mean variance (MV)
framework, fails to adequately explain investor behavior. For instance,
most individuals purchasing insurance contracts to protect against un-
likely events also carry out gambles where the probability of winning
is extremely small. The coexistence of these risk averse and risk-
seeking behaviors cannot be captured by the utility function. Similarly,
Thaler (1985, 1999) raised the idea that individuals divide their current
and future assets into separate, non-transferable portions. They create
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distinct mental accounts which are handled separately and differently.
To better capture these different features, Shefrin and Statman (2000)
developed an alternative model of portfolio choice, the Behavioral Port-
folio Theory (BPT hereafter). The foundation of BPT is in sharp contra-
diction to the foundation of MVT. First, the risk in BPT relates to the
downside risk rather than the variance of returns. BPT investors set a
safety first constraint, as set out in Roy's (1952) model. They aim to se-
cure theirwealth in amaximumnumber of states of nature. Second, BPT
integrates the fact that investors do not behave rationally. BPT assumes
that two conflicting emotions (fear and hope) drive investor behavior
(Lopes, 1987). In contrast with MVT, BPT therefore incorporates proba-
bility weighting, which allows for the coexistence of gambling and in-
surance preferences. Moreover, BPT not only integrates the mental
accounting structure from Kahneman and Tversky's (1979), Tversky
and Kahneman (1992) prospect theory, but also enables investors to
consider their portfolio as a collection of subportfolios, each of which
is optimal for a given mental account.

Our goal in this paper is to investigate the characteristics of the BPT
optimal portfolio. Does the fact that the foundation of BPT is in sharp
contradiction to that of MVT necessarily mean that the BPT optimal
portfolio is different to that of the MV? In their seminal paper,
Shefrin and Statman (2000) show that the BPT optimal portfolio is typ-
ically not MV efficient. However, this result has been questioned over
recent years. A new stream of literature attempts to compare the
asset allocation generated by BPT-like models with that generated by
MVT (Alexander and Baptista, 2011; Baptista, 2012; Das et al., 2004;
Levy and Levy, 2004; Levy et al., 2012). These studies provide evidence
that some features of BPT and MVT almost make their asset allocations
coincide. However, this does not provide sufficient evidence to
conclude that investors can use BPT and MVT interchangeably. The
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weakness of all these studies lies in the assumption of normally distrib-
uted stock returns. This assumption has been shown to be unrealistic
(Mandelbrot, 1963; Mantegna and Stanley, 1995). Moreover, none of
these studies take the entire BPT framework into consideration.2 It
is therefore interesting to test if the asset allocations of these two
models coincide when all these assumptions are relaxed. This is the
first study to attempt an empirical determination of the BPT optimal
portfolio. The characteristics of the BPT optimal portfolio are analyzed
in terms of expected return, risk and skewness. BPT integrates the
overweighting of small probabilities associated to extreme outcomes
by investors. This behavior captures investor preference for positive
skewness and lottery-like stocks (Bali et al., 2011; Kumar, 2009). The
overweighting of small probabilities also reflects the inherent desire
for safety in BPT investors (Lopes, 1987). These preferences will impact
the expected return, risk and skewness of the optimal portfolio of
investors.

Our analysis is comprised of three steps. In afirst step,we investigate
whether BPT andMVT lead to differences in individual portfolio choices.
We compare the asset allocations generated by BPT and MVT without
restrictions and with a sufficient number of stocks in the portfolio. To
this end, we dismiss any assumption concerning the distribution of
returns, take all aspects of BPT into account, and allow for short sales.
Our approach is to empirically compute the asset allocations generated
by BPT and byMVT and to locate the BPT optimal portfolio with respect
to the MV frontier. To carry out our empirical study, we use the U.S.
stock prices contained in the CRSP database to generate a universe of
100,000 possible asset allocations via bootstrap simulation. We solve
the Shefrin and Statman (2000) optimization program for each date of
our sample and determine the BPT optimal portfolio from the 100,000
portfolios. We establish that Shefrin and Statman's (2000) portfolio is
MV efficient in over 70% of cases. BPT is developed on the foundations
of Cumulative Prospect Theory (CPT), but does not incorporate all the
features of this model. CPT is also characterized by the following critera:
(1) individuals maximize a value function based on gains and losses
rather than final wealth, (2) gains and losses are defined with respect
to a given reference point, and (3) the value function exhibits
diminishing sensitivity and loss aversion. Our second analysis is to test
whether the inclusion of these additional features modifies the MV
efficiency of the optimal portfolio when computing the BPT portfolio.
We transform the monetary outcomes of our portfolio sample via the
CPT value function and determine a new optimal portfolio, namely the
BPTCPT optimal portfolio. We show that this new optimal portfolio
leads to similar results in terms of MV efficiency. Despite different
foundations, we show that MVT and BPT lead to similar portfolios in
the MV space.

In a second step, we use an empirical approach to evaluate the three
first moments of the portfolios selected by BPT investors. The BPT and
BPTCPT portfolios are always characterized by a high level of risk and
high returns. These portfolios also display highly positive skewed
returns for almost all of the period under study. We point out that the
BPT optimal portfolio is absent during financial crises; none of the
100,000 portfolios in our sample meet the BPT safety-first constraint.
This result is a consequence of the way BPT investors set their optimal
portfolio. Investors initially satisfy the safety-first criteria at the
cheapest price, deciding if they will invest and enter the market
(concept of fear). BPT investors then use probability weighting, which
captures the desire for positive skewness, to invest remaining wealth
in an Arrow–Debreu security characterized by a high potential payoff
(concept of potential). It follows that when the BPT optimal portfolio
does exist, its returns are characterized by a positive skewness, a high
level risk and high returns.
2 To date, the only comparative analysis carried outwithout any prior assumption about
return distribution is the empirical study realized by Hens and Mayor (2014). However,
like the studies mentioned above, Hens and Mayor (2014) do not take the entire BPT
framework into account.
In a third step, we investigatewhether efficient BPT and BPTCPT port-
folioswould be chosen by typicalMarkowitz investors by examining the
location of these portfolios on the MV efficient frontier. BPT and BPTCPT
portfolios are always characterized by a high level of risk and high
returns, meaning that they always lie on the extreme upper right part
of the frontier. We show that the risk aversion levels induced by BPT
are incompatible with empirical observations. The risk aversion coeffi-
cient associated with the BPT optimal portfolio is up to 10 times lower
than the degree of risk aversion shown by typical individual MV inves-
tors. As a consequence, typical Markowitz investors would typically
avoid investing in such portfolios.

Our empirical analysis contributes to the literature in several ways.
We find that the BPT (and BPTCPT) optimal portfolio is efficient in
most cases. We also show that even when they are efficient, BPT and
BPTCPT portfolios would not be chosen by typical investors as they are
associated to a high level of risk and expected return. We underline
that the BPT portfoliowill be chosen by investorswhose behavior is rad-
ically different from that of MV investors. The BPT and BPTCPT portfolios
are chosen by investors who are attracted by positively skewed returns
and exhibit risk-seeking behavior when potentially high gains are
reachable. However, these portfolios will not be chosen by investors
when the potential losses are too great.

The paper is structured as follows: Section 2 reviews the main
characteristics of Shefrin and Statman's (2000) model and the related
literature. Section 3 presents the data and describes our methodology.
Section 4 provides the results of this empirical study. Section 5 discusses
the features of the BPT and BPTCPT portfolios. Section 6 presents the
robustness tests. Section 7 concludes with a summary of our findings.

2. The model

The Behavioral Portfolio Theory (BPT) developed by Shefrin and
Statman (2000) is based on Roy's (1952) concept of the safety-first ap-
proach. This approach implies that the investor's portfolio risk is not
measured by the variance, but rather by the probability of ruin.3 Ruin
is considered to occur when the investor's final wealth W falls below
the subsistence level. The idea underlying Roy's (1952) concept is that
investors aim tominimize the probability of ruin. Telser (1955) extends
Roy's (1952) concept by introducing the idea of an acceptable level for
the probability of ruin. A portfolio is considered safe when the probabil-
ity of ruin does not exceed a given level α. In Telser's (1955) model, in-
vestors are concerned about both the expected return of the portfolio
and the probability of failure to reach the given subsistence level s.4 It
follows that investors aim to maximize their expected return while
keeping the probability of ruin below a given α level. Formally, the
model is shown as

maxE Rð Þu:c:P W b sð Þ b α; ð1Þ

where R is the portfolio return, s is the subsistence level, α is the accept-
able probability of ruin, and W is the final wealth distribution. BPT is
based on Roy's (1952) safety-first approach, but also integrates some
features of behavioral economics and finance. It combines Lopes'
(1987) Security Potential and Aspiration Theory (commonly denoted
SP/A) with the mental accounting structure from Kahneman and
Tversky's (1979, 1992) prospect theory. In SP/A theory, the investor's
choice is driven by three factors, namely security (S), potential (P) and
aspiration (A). The security factor and the potential factor relate to
two emotional drivers, fear and hope. On the one hand, investors are
driven by fear and wish to secure their wealth. On the other hand,
they are willing to take risks to increase the potential gains. These two
3 The concept of ruin corresponds to the failure to reach a given subsistence level.
4 These investors therefore act as MVT investors, since they are attentive to the expect-

ed return of the portfolio and its risk. However, contrary toMVT, the risk of the portfolio is
not defined by the variance of the portfolio returns but rather by the downside risk.



5 Das and Statman (2013) underline that the optimization program of the MA model
(Das et al., 2004) is a special case of the MVmodel under normality.

6 Obtaining 4262 monthly returns.
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emotional drivers are expressed in the model through a modified prob-
ability distribution of outcomes. Fear (or hope) operates through an
overweighting of the small probabilities associated with the worst
(or best) outcomes. Thus, investors compute their expected wealth by
applying an inverse S-Shape weighting function to the decumulative
probability distribution of outcomes, and by substituting Eπ(W) for
E(W). Lopes' (1987) concept of aspiration generalizes the concept of
subsistence level as described above. Investors aim to reach a specific
level for their final wealth, called the aspiration level or target value.
The risk of the portfolio is therefore the probability of ending below
this target value A. BPT incorporates the mental accounting structure
of Kahneman and Tversky's (1979) prospect theory. Investors have
distinct mental accounts (e.g. education, retirement, bequest…) with
different levels of aspiration. They do not consider their portfolio as a
whole but rather as a collection of mental accounting subportfolios
with distinct aspiration levels. In BPT, investors maximize their expect-
edwealth (calculatedwith decisionweights) subject to the constraint of
theprobability of failure reaching a threshold levelA that remains below
a given α level. This optimization program is as follows

maxEπ Wð Þu:c:p W b Að Þ b α; ð2Þ

where A is the aspiration level, α is the maximum probability of ruin,W
is the final wealth distribution and, π is a transformation function of
probabilities. The literature proposes several ways to transform proba-
bilities. This study uses the specification proposed by Tversky and
Kahneman (1992) in Cumulative Prospect Theory. Themodel is detailed
in 8. In theory, the payoff of the BPT portfolio can be seen as the payoff of
a portfolio combining bonds and a lottery ticket. This particular payoff
results from the decision process of BPT investors; they do not allocate
their wealth simply by solving a mean-variance optimization problem.
Their portfolio can be viewed as a pyramid of assets, where the riskless
instruments are at the bottom and the riskier assets are at the top. BPT
investors proceed in two steps to set their portfolios. First, they satisfy
the safety-first criteria at the cheapest price (concept of security), then
they invest the remaining wealth in an Arrow Debreu security charac-
terized by a high potential payoff (concept of potential). In their seminal
paper, Shefrin and Statman (2000) show that the BPT optimal portfolio
is different from the Markowitz optimal portfolio. However, this result
has been questioned over recent years. Several recent studies attempt
to compare the asset allocation generated by BPT-like models with
that generated byMVT. Levy and Levy (2004) show that while prospect
theory findings are in contradiction with the foundations of MVT, the
prospect theory and MV efficient sets can coincide. Das et al. (2004) in-
tegrate appealing features of MVT and BPT into a new mental account-
ing (MA) framework. The authors assume that a rational investor
divides her wealth among several mental accounts and seeks to reach
a threshold in each mental account. They demonstrate that the MA op-
timal portfolio always lies on the MV efficient frontier. Like Das et al.
(2004), Alexander and Baptista (2011) develop a model where the in-
vestor divides her wealth among accounts, but they also assume that
she delegates the task of allocating wealth among assets to portfolio
managers. They show that portfolio delegation with mental accounting
leads an investor to select optimal portfolios within accounts that gen-
erally lie far from the MV frontier. Baptista (2012) extends Das et al.
(2004) model by assuming that investors face background risk in addi-
tion to portfolio risk. He shows that optimal portfolios lie far from the
MV frontier under fairly general conditions. Jiang et al. (2013) analyze
international portfolio selection with exchange rate risk based on BPT.
They show that the optimal BPT portfolio with exchange rate risk is typ-
ically notmean-variance efficient from the perspective of local investors
unless certain conditions are satisfied. Levy et al. (2012) show that the
Security Market Line Theorem of the Capital Asset Pricing Model
(CAPM) is intact in the Cumulative Prospect Theory (CPT) framework
(Tversky and Kahneman, 1992). With regard to these studies, some
features of BPT and MVT almost make the asset allocations coincide.
Yet these results are not sufficient evidence to conclude that practi-
tioners can use BPT and MVT interchangeably. The weakness of all
these studies is that they are based on strong assumptions and do not
take the whole BPT framework into account. For instance, Levy and
Levy (2004) and Levy et al. (2012) compare MVT with prospect theory
andwith Cumulative Prospect Theory. In these studies, the authors inte-
grate behavioral aspects of BPT but do not take into consideration the
safety-first criteria, which is a key attribute of BPT. In contrast, Das
et al. (2004), Alexander and Baptista (2011), Baptista (2012) and Jiang
et al. (2013) take the mental accounting framework and the safety
first criteria of BPT into account, but do not integrate the behavioral fea-
tures of BPT, whereby investors transform objective probabilities into
decision weights. Moreover, all these studies are based on the same
strong assumption of normally distributed stock returns.5 This assump-
tion has been shown to be unrealistic (Mandelbrot, 1963; Mantegna
and Stanley, 1995). To the best of our knowledge, the only existing com-
parative analysis carried outwithout any prior assumption about return
distribution is the empirical study byHens andMayor (2014). These au-
thors show that the asset allocation derived for CPT differs substantially
from the MV analysis when asset returns are not normally distributed.
Their empirical study has the advantage of discarding the assumption
of normally distributed returns. However, the validity of their results
is limited by the fact that their data set is based on an empirical distribu-
tion carried out with only 8 assets and 15 realizations. This small
number of stocks in the portfolios does not permit a good level of diver-
sification. Moreover, like Levy and Levy (2004) and Levy et al. (2012),
Hens and Mayor (2014) do not take the entire BPT framework into
consideration. In their study, they integrate the behavioral aspects of
BPT but do not take the safety-first criteria into consideration, although
it is a key attribute of BPT.

3. Data and methodology

3.1. Data

The primary dataset used in this article is comprised of the daily
stock prices of 1,452 U.S. stocks from the CRSP database, with a com-
plete price history for the 1995–2011 period. We use stock prices and
dividends paid by the firms to compute the monthly stock returns6 on
a daily frequency (rolling windows). The monthly return Rt,i on stock i
for day t is calculated as

Rt;i ¼ log Pt;i þ Dt;i
� �

− log Pt−20;i
� �

; ð3Þ

where Pt,i is the price of stock i for day t and Di,t is the dividend paid by
the firm.

3.2. The bootstrap method

We consider the matrix R, which contains the 4262 monthly stock
returns over the 1995–2011 period. R is given by

R ¼
R1;1 R1;2 … R1;1492
R2;1 … … …
… … … …
R4262;1 … … R4262;1492

2
664

3
775; ð4Þ

where R1,1 is the monthly return on the first stock over the period
starting on the 3rd of January 1995 and ending on the 31st of January
1995, R2,2 is the monthly return of the second stock over the period
starting on the 4th of January 1995 and ending on the 1st of February
1995, and so on.



9 Our baseline approach implies that each of the 1452 stocks has the same probability of
being in the investor's portfolio. In a robustness check presented at the end of the article,
we introduce a tilt toward large capitalization stocks to reflect the reality that not every
company has the same frequency of being in the investor's portfolio.
10 The algorithm used to generate the integer decompositions is available upon request.
11 The Herfindahl index of diversification is equal to
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BPT investors determine their optimal portfolio by maximizing an
objective function based on subjective expected portfolio returns. To de-
termine the BPT optimal portfolio, we therefore assume a single period
economy and generate a series of expected returns from historical
returns. Our aim is to use the series of historical ex-post returns as an
input to compute portfolio expected returns. Our analysis relies on a
rolling sample approach. Specifically, for each date t (from t = 251 to
t = 4262), we generate possible scenarios (states of nature). To this
end, we use the bootstrap historical simulation method (Hull and
White, 1998). Our approach is the following. In each of the 4012 simu-
lations (from t= 251 to t = 4262), we first randomly select 80 stocks7

among the 1492making up our sample.8We then select the 250month-
ly returns of these 80 stocks prior to date t. We obtain a matrix R⁎,
defined as

R� ¼
R�
t−250;1 R�

t−250;2 … R�
t−250;80

R�
t−249;1 … … …

… … … …
R�
t−1;1 … … R�

t−1;80

2
664

3
775: ð5Þ

Tomodel the first state of nature, i.e., the return obtained at the end
of our single period, we randomly select a row of the matrix R⁎. We re-
peat this process 1000 times in order to obtain the 1000 states of nature
for our 80 stocks. Note that by randomly selecting a rowof thematrixR⁎,
we do not alter the structure of correlations between the different
stocks. The matrix θ containing the 1000 states of nature for the 80
stocks at date t is as follows

θ ¼
θ1;1 θ1;2 … θ1;80
θ2;1 … … …
… … … …
θ1000;1 … … θ1000;80

2
664

3
775; ð6Þ

where θi,j is the monthly return of stock j if state of nature i occurs.
We repeat this process 4012 times (from t=251 to t= 4262) to ob-

tain a significant number of different BPT optimal portfolios.

3.3. Generation of portfolios

In practice, for each date t, there is an infinite number of different
portfolios that the investor can choose to hold. However, for our
study, we build a set of 100,000 portfolios. The investorwill then choose
one portfolio among the 100,000 possible choices. We also limit to 80
the maximum number of stocks that the investor can hold. This large
number of stocks in the portfolio ensures a good level of portfolio
diversification. Themethodology presented belowwas used to generate
the sample of 100,000 portfolios and provide the best possible approx-
imation of the choice faced by the investor in reality. We consider two
different situations. In the first situation, the investor cannot short
stocks. In the second situation, short sales are possible.

3.3.1. Portfolios without short sales
In order to obtain a good diversity between the different portfolios,

we need to generate portfolios with different numbers of stocks and dif-
ferent weight distributions. Our approach is the following. We consider
a portfolio of up to n stocks. We assume that the weight associated to a
given stock is equal to k/n with k = 0, 1, …, n. It follows that the most
diversified portfolio is the 1/n portfolio, while the least diversified port-
folio is the one where the investor invests all her wealth in just one
stock. Given the assumption that the weight associated to the different
stocks is equal to k/n, we can model all the different possible portfolio
compositions by considering all the possible integer decompositions
7 In Section 6, we present robustness tests where the 80 stocks are not randomly
selected.

8 Portfolios of up to 80 stocks provide sufficient diversification. Additionally, computa-
tion for portfolios containing over 80 stocks becomes extremely long or even impossible.
(without ranking) of the number n. For example, for n = 4 there are 5
possible integer decompositions:

I1 ¼
4
0
0
0

2
664
3
775 I2 ¼

3
1
0
0

2
664
3
775 I3 ¼

2
2
0
0

2
664
3
775 I4 ¼

2
1
1
0

2
664
3
775 I5 ¼

1
1
1
1

2
664

3
775 : ð7Þ

If we want to randomly select a portfolio of up to four stocks, we se-
lect one of thefive possible combinations (see above) and then random-
ly reorder the vector of weights. In other words, we first select the
structure of weights, then randomly attribute these different weights
to the different stocks.9 For n=80, the total number of integer decom-
positions is equal to 15,796,476 (see, Rademacher, 1937).10 We then
randomly select 100,000 decompositions among the 15,796,476
possible integer decompositions, randomly reorder these vectors and
transform them into weights by dividing each element by n = 80.

The same 100,000weight vectors are used for each simulation (note
that the 80 stocks are different for each simulation). The average num-
ber of stocks in the portfolios is equal to 18.18 (median of 18), with a
maximum of 70 stocks and a minimum of 3. We calculate the diversifi-
cation of each portfolio by means of the Herfindahl index.11 The mean
Herfindahl index is equal to 0.1271 (median of 0.1163). The most
(respectively least) diversified portfolio has a Herfindahl index of
0.0178 (respectively 0.7037).

3.3.2. Portfolios with short sales
We now consider a scenario where our investor is allowed to short

stocks. Our methodology to compute a portfolio when short sales are
allowed is as follows:We randomly select three portfolios A, B and C fol-
lowing the above methodology. A portfolio with negative weights is
simply obtained by considering the linear combination A + B − C. The
sum of the weights of B − C is equal to 0. It follows that the sum of
weights of the combination A + B − C is equal to one. Let us illustrate
this combination by considering the following portfolios A, B and C:

A ¼
0:25
0:25
0:5
0

2
664

3
775 B ¼

0:25
0:25
0:25
0:25

2
664

3
775 C ¼

0
0:25
0
0:75

2
664

3
775 ⇒ Aþ B−C ¼

0:5
0:25
0:75
−0:5

2
664

3
775 :
ð8Þ

The result of this linear combination is a portfolio containing both
positive and negative weights.

When allowing for short sales, the algorithm generates portfolios
that containmore stocks than they dowhen short sales are constrained.
The average number of stocks in the portfolios is equal to 42.87 (median
of 43) with a maximum of 73 stocks and a minimum of 19. On average,
the portfolios contain 29 long positions (mean of 29.91 and median
of 28) and 14 short positions (mean of 13.96 and median of 13).
In the portfolios, the average ratio of long positions to short positions
is equal to 2.36 (median of 2.14) with a minimum ratio of 0.33 and a
maximum ratio of 22.
HI ¼
Xn
i¼1

ωið Þ2;

where n is the number of stocks in the portfolio and ωi is the weight of stock i.



12 The weighting function w is

w pð Þ ¼ pγ

pγ þ 1−pð Þγ� �1=γ ;
with γ = 0.61.
13 All the features of CPT are detailed in Appendix A.
14 The CPT value function is defined by

v yð Þ ¼ y−κð Þ0:88 if y ≥ κ
−2:25ð− y−κð ÞÞ0:88 if y b κ

( )
:

15 In a robustness check presented at the end of the article, we assimilate the reference
point to the average return of the S&P 500 over the previous three years.
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3.4. The BPT optimal portfolio and the efficient frontier

In this section, our aim is to empirically determine the BPT optimal
portfolio and to locate it in theMV space.Wemake an empirical estima-
tion of the efficient frontier using the 100,000 generated portfolios. The
approach is as follows: For each portfolio, we check if there is another
portfoliowith a higher expected return and a lower variance. A portfolio
is considered to be located on the efficient frontier if no other portfolio is
found in the sample with both a higher expected return and a lower
variance. We call the set of portfolios that are located on the efficient
frontier Sef.

The BPT optimal portfolio satisfies

maxEπ Wð Þu:c:p W b Að Þ b α; ð9Þ

whereW is the final wealth distribution of the investor, A is the aspira-
tion level and α the acceptable probability of ruin.

We first determine the portfolios that satisfy the safety first con-
straint. A portfolio satisfies this constraint if its value at the end of the
period is at least equal to aspiration level A in 1 − α % of the states of
nature. We denote S⁎ as the set of portfolios satisfying the safety-first
constraint. By construction, S* ⊂ S, S being the set of 100,000 generated
portfolios. For illustrative purposes, Fig. 1 plots set S, composed of the
100,000 generated portfolios (black crosses), and set S⁎, composed of
the portfolios satisfying the safety-first constraint (gray stars).

The BPT optimal portfolio is the S⁎portfolio thatmaximizes Eπ(W). In
order to compute the expected return with subjective decision weights,
we need to transform the objective probabilities (denoted pi) into deci-
sion weights via a weighting function. BPT is a rank-dependent model,
as defined by Quiggin (1982). This means that the weighting function
w is not applied to individual objective probabilities, but rather to the
cumulative or decumulative distribution function of the prospect. The
methodology for transforming the probabilities is as follows: Firstly,
the vector of states of nature θ for each portfolio were ranked from the
worst outcome to the best outcome (see Eq. (6)). For portfolio i, the
vector of states of nature ranked from the worst outcome to the best
outcome is stated as

yi ¼
yi;1
…
…

yi;1000

0
BB@

1
CCA; ð10Þ

where yi,k is the value of portfolio i if the kth state of nature is realized.
Secondly, we transform the objective probabilities into decision

weights. We accomplish this transformation by applying the weighting
function proposed by Tversky and Kahneman (1992) in CPT. The
bootstrap simulation assumes that each state of nature is equally likely.
Thus, the vector p of objective probabilities is written as

p ¼
p1 ¼ 1

1000…
…

p1000 ¼ 1
1000

0
BBBB@

1
CCCCA: ð11Þ

We define the vector of decision weights as

π ¼

π1
⋮
πk
⋮

π1000

0
BBBB@

1
CCCCA ¼

π1 ¼ w
X1000
j¼1

pj

0
@

1
A−w

X1000
j¼2

pj

0
@

1
A

⋮

πk ¼ w
X1000
j¼i

p j

0
@

1
A−w

X1000
j¼kþ1

pj

0
@

1
A

⋮
π1000 ¼ w p1000ð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð12Þ
where w is the weighting function12 proposed by Tversky and
Kahneman (1992). Consider F the cumulative distribution function
of y. We notice thatw(pi) is applied to the decumulative distribution
function of y.

w
Xn
j¼1

pj

0
@

1
A ¼ w 1−F yj−1

� �� �
ð13Þ

This methodology permits to have different levels of decision
weights even though the objective probabilities are equiprobable.

The BPT optimal portfolio is the S⁎ portfolio that maximizes the
inner product Eπ(W) = y′π. The final step is to check whether this
portfolio is part of the Sef set (the set that contains the portfolios lo-
cated on the efficient frontier). We repeat this process 4012 times
(for each date t) in order to obtain a significant number of optimal
portfolios.

3.5. Transformation of the monetary outcomes: the BPTCPT portfolio

In BPT, Shefrin and Statman (2000) consider an investor who trans-
forms probabilities into decisionweights. But behavioral studies such as
CPT show that the distortion of objective probabilities is not the only
irrational feature of investors.13 Investors also make decisions based
on change of wealth rather than on total wealth, and can exhibit risk-
seeking behavior when faced with losses. Therefore, individuals
determine the subjective value of each monetary outcome via a value
function. Our aim is to check if the same results occur for a CPT investor
who subjectively transformsmonetary outcomes and objectives proba-
bilities. The BPTCPT optimal portfolio is the portfolio that satisfies

maxEπ v Wð Þ½ �u:c:p W b Að Þ b α; ð14Þ

where v is the CPT value function that transforms the monetary
outcomes into utility.14

The function v is defined as relative to a reference point κ that
distinguishes between gains and losses. In this study, we assimilate
the reference point κ to the long-term risk-free rate (i.e., 10-year U.S.
Treasury Bond).15 A stock return greater than the long-term risk-free
rate is considered a gain, whereas a stock return below long-term
risk-free rate is considered a loss.

The methodology is identical to that used in the previous section.
The difference is that the BPTCPT optimal portfolio is the S⁎ portfolio
that maximizes the inner product Eπ ½vðWÞ� ¼ v0π. For portfolio i, the
vector of modified (ranked) outcomes is defined as

vi ¼
v yi;1
� �
…
…

v yi;n
� �

0
BB@

1
CCA: ð15Þ

As gains and losses are treated differently in the value function, an
identical approach is necessary for the weighting function. We define
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the modified vector of decision weights π as

π ¼

π−
1
⋯
π−
l
⋯
πþ
k
⋯
πþ
n

0
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1
CCCCCCCCA
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ð16Þ

where w is the weighting function16 proposed by Tversky and
Kahneman (1992).

The optimal portfolio is the portfolio that maximizes the inner
product Eπ ½vðWÞ� ¼ v0π . As in Section 3.4, we repeat this simulation
4,012 times in order to obtain a significant number of optimal portfolios.

4. Empirical analysis

Two samples of 100,000 portfolios are considered here, namely one
without short sales and onewhere short sales are allowed. Each investor
sets a safety-first constraint by specifying the return on a portfolio
which should not fall below level A with more than α probability.
Because the safety-first constraint is not necessarily the same for each
investor or each mental account, we consider several configurations
for α and A. The aspiration level A is given by the initial wealth, capital-
ized at a rate r. We consider six different specifications for r: (1) the
short-term risk free rate (i.e., 3-month Treasury Bill); (2) the long-
term risk-free rate (i.e., 10-year U.S. Treasury Bond); (3) the average
S&P 500 return over the previous three years; (4) an annualized rate
of 1%; (5) an annualized rate of 5%; and, (6) an annualized rate of 10%.
16 The weighting function w is written as

wþ pð Þ ¼ pγþ

pγþ þ 1−pð Þγþ� �1=γþ
w− pð Þ ¼ pγ−

pγ− þ 1−pð Þγ−� �1=γ−
where γ+ = 0.61 and γ− = 0.69.
The different values for α are 0.1, 0.2 and 0.3. For instance, values set
as r = 1 % and α= 0.1 indicate the investor's desire for the probability
of failing to reachA=W0e

1+ r to exceedα=0.1.17Wehave a total of 18
different specifications.
4.1. Non-Gaussian portfolios returns

For each simulation, we run both a Jarque–Bera test and a
Kolmogorov–Smirnov test to check whether the portfolio returns are
Gaussian. The Jarque–Bera test indicates that, for each simulation,
about 90,000 portfolios out of 100,000 present non-Gaussian returns
(at a 5% significance level). When we use the Kolmogorov–Smirnov
test, all the portfolios have non-Gaussian returns.
4.2. Safety first constraint

The number of portfolios (among the 100,000) that meet the safety-
first constraint are checked or each simulation. Fig. 2 indicates the num-
ber of simulations with at least one portfolio meeting the safety-first
constraint for different parameterizations of α and different aspiration
levels. The number of simulations with at least one portfolio meeting
the safety-first constraint increases with α and decreases with the
level of the aspiration level. With α equal to 0.1 and the aspiration
level set as a short-term risk-free rate, at least one portfolio meets the
constraint in 26% of the cases. When choosing α equal to 0.3 and the
same aspiration level, this proportion increases to 92.3%. This result
seems quite natural, since the expectation of investors decreases with
α.Whenαdecreases, the investorwants to securemore states of nature.
Conversely, if α increases, the investor wants to secure fewer states of
nature. It is therefore more likely that a portfolio will satisfy the
safety-first constraint when α is high. For our empirical analysis, we
only consider simulations in which at least one portfolio meets the
safety-first constraint.
17 For simplicity's sake, in the rest of the paper we will write A = 1 % when we set the
rate r as equal to 1%.
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4.3. Optimal portfolios and the efficient frontier

Table 1 indicates the proportion of simulations forwhich the BPT op-
timal portfolio is located on the efficient frontier. We observe that the
BPT optimal portfolio is located on the efficient frontier in approximate-
ly three out of four simulations. This proportion is relatively robust to
changes in α or in the aspiration level. The introduction of short sales
does not appear to modify the results.

Table 2 indicates the proportion of simulations for which the BPTCPT
optimal portfolio is located on the efficient frontier. The results are sim-
ilar to those obtained when studying the BPT optimal portfolio. The
BPTCPT optimal portfolio is located on the efficient frontier in a little
over three out of four simulations. This proportion is relatively robust
to changes in α or in the aspiration level. Here again, the introduction
of short selling does not modify the results.

5. Characteristics of the BPT portfolios

In this section, we investigate the location of the BPT and BPTCPT
optimal portfolios in the MV space. First, we locate the BPT optimal
Table 1
Proportion of simulations for which the BPT optimal portfolio is MV efficient.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.7284 0.7316 0.7215 0.7380 0.7287 0.7321
α = 0.2 0.7369 0.7245 0.7255 0.7272 0.7291 0.7357
α = 0.3 0.6975 0.7051 0.7037 0.6933 0.7065 0.7171

Panel B: Short sales allowed
α = 0.1 0.7694 0.7659 0.7929 0.7627 0.7688 0.8070
α = 0.2 0.7260 0.7291 0.7319 0.7249 0.7249 0.7491
α = 0.3 0.6722 0.6744 0.6745 0.6654 0.6732 0.6845

This table provides theproportion of simulations forwhich theBPT optimal portfolio isMV
efficient. The probability of failure (α) to reach the aspiration level takes the value 0.1, 0.2
and 0.3. The different values for the aspiration level are: (1) the long-term risk-free rate
(rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3 years
(rS &P); (4) an annualized rate of 1% (r1 %); (5) an annualized rate of 5% (r5 %); and,
(6) an annualized rate of 10% (r10 %). The total number of simulations is 4,012. For each
simulation, the BPT optimal portfolio is selected from a sample of 100,000 portfolios.
portfolio relative to the BPTCPT optimal portfolio. We examine whether
these portfolios coincide orwhether one is always riskier than the other.
We then look at the expected return, standard deviation and skewness
of the BPT and BPTCPT optimal portfolios. Finally, we investigate the
location of the BPT and BPTCPT optimal portfolios on the MV efficient
frontier.
5.1. Location of BPT portfolios relative to BPTCPT portfolios

Table 3 displays the proportion of simulations for which BPT and
BPTCPT optimal portfolios coincide. For instance, when short sales are
allowed, the aspiration level corresponds to the long-term risk-free
rate and α = 0.2, BPT and BPTCPT optimal portfolios coincide in 67% of
cases. In the remaining 33%, the BPT optimal portfolio has a higher var-
iance than the BPTCPT optimal portfolio (in more than 99% of cases).18

This difference in variances is significant at the 1% level.19 The BPT opti-
mal portfolio appears to be riskier than the BPTCPT optimal portfolio. An
explanation for this result is that BPTCPT investors transform monetary
outcomes into utility via a value function v. This function v is defined
to integrate the behavioral observations of Tversky and Kahneman
(1992). First, v is concave over gains and convex over losses. That
means that BPTCPT investors are characterized by risk averse behavior
for most gains (gains associated with moderate and high probabilities).
Second, v is steeper for losses than for gains to account for the fact that
investors have an asymmetric perception of gains and losses. Experi-
mental evidence (Erev et al., 2008; Tversky and Kahneman, 1991)
shows that individuals are loss averse; the loss of a given amount of
money creates distress that has a greater effect than the satisfaction
generated by a gain of the same amount. Losses are weighted about
twice as much as gains. Thus, BPTCPT investors are characterized by
risk averse behavior for most gains, and a strong loss aversion. It
seems natural, therefore, that these agents select less risky portfolios
than BPT investors.
18 This result is robust for all the other specifications. On average, the BPT optimal port-
folio has a higher variance than the BPTCPT optimal portfolio in more than 98% of cases.
19 We run a Jarque–Bera test and a Kolmogorov–Smirnov test to check that the series of
variances are normally distributed, then use a Student t-test to compare the mean vari-
ances of the BPT and BPTCPT optimal portfolios.



Table 3
Proportion of simulations for which the BPT optimal portfolio is the same portfolio as the
BPTCPT optimal portfolio.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.8916 0.8924 0.8953 0.8769 0.8898 0.9178
α = 0.2 0.6987 0.7108 0.7190 0.6791 0.7063 0.7413
α = 0.3 0.4999 0.5035 0.5111 0.4886 0.5079 0.5372

Panel B: Short sales allowed
α = 0.1 0.9025 0.9012 0.8992 0.8902 0.9065 0.9128
α = 0.2 0.6725 0.6831 0.6831 0.6661 0.6796 0.7028
α = 0.3 0.5328 0.5394 0.5321 0.5311 0.5408 0.5528

This table provides the proportion of simulations for which the BPT optimal portfolio is
identical to the BPTCPT optimal portfolio. The probability of failure (α) to reach the aspira-
tion level takes the value 0.1, 0.2 and 0.3. The different values for the aspiration level are:
(1) the long-term risk-free rate (rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500
return over the past 3 years (rS &P) (4) an annualized rate of 1% (r1 %); (5) an annualized
rate of 5% (r5 %); and, (6) an annualized rate of 10% (r10 %). The total number of simulations
is 4,012. For each simulation, the BPT and the BPTCPT optimal portfolios are selected from a
sample of 100,000 portfolios.

Table 2
Proportion of simulations for which the BPTCPT optimal portfolio is MV efficient.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.7610 0.7572 0.7457 0.7632 0.7599 0.7504
α = 0.2 0.7731 0.7647 0.7745 0.7690 0.7672 0.7647
α = 0.3 0.7726 0.7799 0.7709 0.7789 0.7807 0.7800

Panel B: Short sales allowed
α = 0.1 0.7939 0.7900 0.8145 0.7920 0.7927 82.61
α = 0.2 0.7818 0.7828 0.7837 0.7834 0.7822 0.7906
α = 0.3 0.7603 0.7617 0.7643 0.7586 0.7905 0.7642

This table provides the proportion of simulations for which the BPTCPT optimal portfolio is
MV efficient. The probability of failure (α) to reach the aspiration level takes the value 0.1,
0.2 and 0.3. The different values for the aspiration level are: (1) the long-term risk-free rate
(rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3
years (rS &P); (4) an annualized rate of 1% (r1 %); (5) an annualized rate of 5% (r5 %); and,
(6) an annualized rate of 10% (r10 %). The total number of simulations is 4,012. For each
simulation, the BPTCPT optimal portfolio is selected from a sample of 100,000 portfolios.
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In Table 3 we observe that the percentage of simulations for which
BPT and BPTCPT optimal portfolios coincide decreases with α levels.
When the aspiration level corresponds to the long-term risk-free rate,
α equals 0.3 and short-sales are allowed, BPT and BPTCPT portfolios coin-
cide in 54% of the simulations. This result is not surprising as fewer port-
folios meet the safety-first constraint when the α level is low.
5.2. Location of the portfolios on the efficient frontier

BPT and BPTCPT portfolios consistently exhibit a high expected return
and a high level of risk in all 18 specifications. On average, the expected
return of the BPT portfolio is 10 times higher than the return of the S&P
500 when short sales are allowed, and 5 times higher without short
sales.20 A significant increase in expected return and the risk of the
BPT portfolio is observed when there are no short selling constraints.
This difference is due to the way BPT investors select their portfolio.
They first secure wealth with respect to their aspiration level. Next,
they bet in few states of nature in order to meet their expectations of
growing rich in a sizable way. In this second phase, BPT investors are
willing to take more risks in the hope of winning a significant amount
of money. The possibility of short-selling enhances this risk-taking
behavior.

In Fig. 3, we plot the expected return and standard deviation of the
BPT optimal portfolio for each date t between 1996 and 2011.21 On
this graph, we also represent the expected returns and standard
deviations of the maximum return portfolio (i.e., the portfolio located
on the efficient frontier which presents the highest return) and of the
minimum variance portfolio. The expected return and risk associated
with the BPT optimal portfolio are close to those of themaximum return
portfolio. This observation is consistent with the concept of hope and
potential inherent in Shefrin and Statman's (2000) model. Investors
aim to grow rich in a sizable way and are willing to take on risk to in-
crease potential gains (Lopes, 1987). The skewness of the BPT optimal
portfolio confirms this point. Fig. 4 plots the skewness of the BPT opti-
mal portfolio and the average skewness of the portfolios located on
themean variance frontier. The BPT portfolio displays positively skewed
returns. The concept of hope inherent to BPT investors leads them to
gamble and to prefer positively skewed portfolios in the hope of
obtaining a high return. Such investors will prefer lottery-type stocks
with highly positive skewness (Bali et al., 2011; Kumar, 2009). Figs. 3
and 4 also show the absence of a BPT optimal portfolio for several
20 This result for the BPT and BPTCPT optimal portfolios is robust to changes in both aspi-
ration and α levels.
21 Fig. 3 describes the following specification: α is equal to 0.3, an aspiration level that
corresponds to the long-term risk-free rate and no short-sales. The graph is similar when
taking other specifications.
dates of our sample (2003, 2009). This absence coincides with periods
of financial crises where expected returns are relatively low. During
such periods, BPT investors decide against invest in stocks. This behavior
results from the concept of fear and security that characterizes BPT in-
vestors. BPT investors wish to secure their wealth before gambling
and investing in skewed assets. If no potential portfolio can satisfy
their safety-first constraint, they do not take on risk and exit themarket.

5.3. BPT portfolio and mean variance investors

The previous sections show that most BPT and BPTCPT optimal
portfolios are MV efficient. However, while being efficient, these
portfolios are characterized by a very high level of risk. They are there-
fore always located on the upper right of the efficient frontier. Fig. 5 pro-
vides an illustration of the empirical efficient frontier and of the BPT
optimal portfolio location. When BPT and BPTCPT optimal portfolios
are MV efficient, they coincide with portfolios that could theoretically
be chosen by Markowitz investors. This section investigates whether
usualMarkowitz investorswould choose to invest in BPT andBPTCPT op-
timal portfolios.

In the canonical MVT problem, investors minimize the objective
function (1/2)V(R) subject to the constraint E[R] = e, where e stands
for the expected return set by the agent. Each level of e corresponds to
a portfolio on the MV frontier. The greater the level of e, the riskier the
portfolio will be. As the BPT optimal portfolio is located in the upper
right part of the MV frontier, the MV investor whose optimal portfolio
coincides with the BPT portfolio would deliberately choose to set a
high level for e in her optimization program.

Another way to solve the MVT problem is to maximize E(R) − (γ/
2)V(R) with a different level of γ, where γ stands for the risk aversion
coefficient. Each level of γ corresponds to a portfolio on the MV frontier.
The less the investor is risk averse, the smaller her risk aversion coefficient
will be, and the higher the expected return of her optimal portfolio
will be. As the BPT optimal portfolio is associatedwith a significant couple
expected return/risk, only a MV investor characterized by a small risk
aversion coefficient will choose this kind of portfolio. In this section, we
investigate the level of the risk aversion coefficient that corresponds to
the location of the BPT optimal portfolio on the MV efficient frontier.
Remember that a MV investor maximizes

X0R− γ=2ð ÞX0VXu:c:X01 ¼ 1; ð17Þ

whereX is the vector of portfolioweights of the 80 stocks,R is the vector of
the 80 expected returns, V is the return covariance, and 1 = [1, 1,….1]′.
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Fig. 3. Expected return and standard deviation of the BPT optimal portfolio.
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The closed form solution of this optimization problem is

X� ¼ 1
γ
V−1 R−

10V−1R−γ
10V−11

 !
1

" #
: ð18Þ

X⁎ gives the composition of the efficient portfolio for a given level of γ.
Furthermore, we know that X⁎ is also the well-known solution to the
canonical MVT problem, where investors minimize the objective func-
tion (1/2)X′VX under the constraints X0R ¼ e and X′1 = 1. Therefore,
X⁎ can also be written as (see Huang and Litzenberger, 1988)

X� ¼ X1 þ e� X2; ð19Þ

with22

X1 ¼ 1
D

BV−11−AV−1R
h i

X2 ¼ 1
D

CV−1R−AV−11
h i

:
ð20Þ

Using Eq. (19), we have

X1 þ e� X2 ¼ 1
γ

V−1R−
A
C
� V−11

� 	
þ V−11

C

⇒e� X2 ¼ 1
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C
−X1:

ð21Þ

It is then possible to show (see proof in 9) that

e� X2 ¼ 1
γ
þ A
D


 �
V−1R−

A
C
� V−11


 �
: ð22Þ
22 with

A ¼ 10V−1R; B ¼ R
0
V−1R

C ¼ 10V−11; D ¼ BC−A2 :
Therefore, the expected return of the portfolio e and the risk
aversion coefficient γ are linked by the following hyperbolic relation:

e ¼ D
C

1
γ
þ A
D


 �
⇔γ ¼ D

e� C−A
: ð23Þ

Our aim here is to discuss the value of the risk aversion coefficient
associated with the expected return of the BPT and BPTCPT portfolios
(γBPT and γCPT). We compute the relative value of γBPT and γCPT by
comparing γBPT and γCPT to the risk aversion coefficient of typical MV
portfolios. Our goal is to determine to what extent the BPT investors
could be less risk averse than typical MV investors. To this end, we con-
sider two categories of MV portfolios: (1) a set of 4 efficient portfolios
with expected return equal to the expected return of the minimum-
variance (min-v) portfolio + 2 % (respectively + 5 %, + 10 % and
+ 20 %), and (2) the optimal portfolio of an investor that seeks to
reach the S&P 500 return.23 We then compute the coefficient of risk
aversion γ associated with these different portfolios. Tables 4 and 5 dis-
play the six ratios γMV on γBPT and γCPT. These ratios indicate howmuch
lower is the risk aversion of a MV investor who chooses the BPT portfo-
lio compared to typical MV investors. For instance, when short-sales are
allowed and α=0.2, the MV investor who chooses to invest in the BPT
portfolio is 10 times less risk averse than aMV investorwho chooses the
efficient portfolio associated with the S&P 500 expected return.

For all the specifications tested, the risk aversion coefficient γBPT

(respectively, γCPT) associated with the BPT optimal portfolio (BPTCPT
optimal portfolio) is significantly lower than the risk aversion coeffi-
cient γMV associated with usual MV portfolios.24 The MV investor who
decides to invest in the BPT portfolio has a lower degree of risk aversion
than typical MV investors. This result is reinforced when short-sales are
allowed. Thus, even if the BPT optimal portfolio is mean variance
23 For several dates in our sample, the expected return of the S&P 500 is too small to ob-
tain a portfolio located on the efficient frontier. We exclude these dates from the calcula-
tion of γS &P.
24 We use a Jarque–Bera and a Kolmogorov–Smirnov test to show that the series of risk
aversion coefficients are normally distributed. The significance of the difference between
means is then assessed using a Student t-test.



1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

P
or

tfo
lio

 s
ke

w
ne

ss

Average skewness of the portfolios located on the empirical efficient frontier
Skewness of the BPT optimal portfolio

Fig. 4. Skewness of the BPT optimal portfolio.

428 M. Pfiffelmann et al. / Economic Modelling 53 (2016) 419–435
efficient, it will not be chosen by ordinary MV investors. Therefore, the
coincidence of the BPT optimal portfolio and the MV efficient set does
not mean that these two theories lead to the same asset allocation.

6. Robustness tests

6.1. Portfolio weights and stock selection

In the baseline approach, any stock among the 1452 in our sample
has the same probability of being included in the portfolio. However,
in practice, investors tend to favor large capitalization stocks. In order
to test whether market capitalization may impact our results, we run
our entire analysis using two alternative processes to include stocks in
the portfolio. The first alternative selection process is quite simplistic
and consists of retaining only the 80 largest capitalization stocks in
our sample. Results (unreported) are unchanged. The second selection
process consists of introducing a tilt toward large capitalization stocks.
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Fig. 5. Illustration of the empirical efficient frontier — BPT optim
Our selection rule is as follows: For each date t, we build ten deciles of
capitalization. The probability of being included in the portfolio is
therefore a function of the capitalization deciles. For instance, we set
the probability so that a stock in the first decile of capitalization (largest
ones) is ten timesmore likely to be selected in the portfolio compared to
a stock in the tenth decile. Similarly, a stock in the second decile of cap-
italization is nine times more likely to be selected, and so on. Tables C.1
to C.5 present the empirical results using this alternative selection
process (these tables correspond to Tables 1 to 5). This confirms that
our results are not driven by the selection process.

6.2. BPTCPT with alternative reference point κ

In our study,we set the referencepoint κ equal to the long-term risk-
free rate (i.e., the 10-year U.S. Treasury Bond). However, the return of
the stockmarket is also another natural reference point for constructing
the utility over gains and losses. We therefore replicate our analysis of
0.1 0.12 0.14 0.16
d deviation

al portfolio located on the upper right part of the frontier.



Table 4
BPT optimal portfolio: risk aversion coefficient.

γmv + 2 %/γBPT γmv + 5 %/γBPT γmv + 10 %/γBPT γmv + 20 %/γBPT γS &P/γBPT γmv + 2 %/γBPT γmv + 5 %/γBPT γmv + 10 %/γBPT γmv + 20 %/γBPT γS &P/γBPT

Panel A: Short sales forbidden Panel B: Short sales allowed

Aspiration level = rST
α = 0.1 32.2996 13.0937 6.6898 3.4845 7.5437 48.3701 19.6084 10.0183 5.2182 9.7672
α = 0.2 34.1458 13.8421 7.0722 3.6836 7.6432 55.9851 22.6954 11.5955 6.0397 10.7102
α = 0.3 36.4884 14.7918 7.5574 3.9364 7.4394 58.4194 23.6822 12.0997 6.3023 11.3327

Aspiration level = rLT
α = 0.1 32.6953 13.2541 6.7718 3.5272 7.945 48.1962 19.5379 9.9823 5.1994 9.8848
α = 0.2 34.3457 13.9232 7.1136 3.7052 7.6931 55.9023 22.6619 11.5783 6.0307 10.7406
α = 0.3 36.6276 14.8482 7.5862 3.9514 7.4756 58.4196 23.6823 12.0997 6.3023 11.3386

Aspiration level = rS&P
α = 0.1 32.6224 13.2246 6.7567 3.5193 8.5501 47.9591 19.4418 9.9332 5.1738 10.8804
α = 0.2 33.1758 13.4489 6.8713 3.579 7.6037 55.7659 22.6066 11.5501 6.016 10.9065
α = 0.3 35.8799 14.5451 7.4313 3.8707 7.4061 58.5279 23.7262 12.1221 6.314 11.3991

Aspiration level = r1%
α = 0.1 31.3987 12.7285 6.5032 3.3873 6.8878 48.518 19.6684 10.0489 5.2341 9.6168
α = 0.2 34.3707 13.9333 7.1188 3.7079 7.6012 56.2522 22.8037 11.6508 6.0685 11.011
α = 0.3 36.6031 14.8383 7.5811 3.9487 7.4548 58.4085 23.6778 12.0974 6.3011 11.3457

Aspiration level = r5%
α = 0.1 32.3501 13.1142 6.7003 3.4899 7.5952 48.3907 19.6168 10.0225 5.2204 9.933
α = 0.2 34.4775 13.9766 7.1409 3.7194 7.7473 55.9326 22.6741 11.5846 6.034 10.7478
α = 0.3 36.6779 14.8686 7.5966 3.9568 7.4788 58.3944 23.6721 12.0945 6.2996 11.3257

Aspiration level = r10%
α = 0.1 33.7376 13.6767 6.9876 3.6396 9.0455 49.0683 19.8915 10.1629 5.2935 10.2115
α = 0.2 35.091 14.2253 7.2679 3.7856 7.5001 55.7324 22.593 11.5431 6.0124 10.8163
α = 0.3 36.8559 14.9408 7.6335 3.976 7.5744 58.4719 23.7035 12.1105 6.3079 11.5013

This table compares the risk aversion coefficient of the BPT optimal portfolio to the risk aversion coefficients of other portfolios such as the minimum variance portfolio or the S&P 500
portfolio. The probability of failure (α) to reach the aspiration level takes the value 0.1, 0.2 and 0.3. The different values for the aspiration level are: (1) the long-term risk-free rate
(rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3 years (rS &P); (4) an annualized rate of 1% (r1 %); (5) an annualized rate of 5% (r5 %); and, (6) an annualized
rate of 10% (r10 %).γBPT is the risk aversion coefficient of the BPT optimal portfolio. γmv is the risk aversion coefficient of theMVefficient portfoliowith an expected return that is equal to the
minimumvariance portfolio return, plus an annualized return of x %.γS &P represents the risk aversion coefficient of theMV efficient portfoliowith an expected return that is equal to the of
the S&P 500 return.
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the BPTCPT portfolio using this alternative reference point (the S&P 500
return over the previous three years). Tables C.6, C.7 and C.8 present the
empirical results using this alternative reference point. Our conclusions
remain unchanged.
Table 5
BPTCPT optimal portfolio: risk aversion coefficient.

γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γ

Panel A: Short sales forbidden

Aspiration level = rST
α = 0.1 31.9941 12.9699 6.6265 3.4515 7.5433
α = 0.2 32.3978 13.1335 6.7101 3.4951 7.2409
α = 0.3 32.9833 13.3709 6.8314 3.5582 6.7932

Aspiration level = rLT
α = 0.1 32.3875 13.1293 6.708 3.494 7.9084
α = 0.2 32.6663 13.2424 6.7658 3.524 7.2696
α = 0.3 33.1203 13.4264 6.8598 3.573 6.8378

Aspiration level = rS&P
α = 0.1 32.4121 13.1393 6.7131 3.4966 8.5342
α = 0.2 31.5653 12.796 6.5377 3.4053 7.1831
α = 0.3 32.486 13.1693 6.7284 3.5046 6.717

Aspiration level = r1%
α = 0.1 31.0483 12.5865 6.4306 3.3495 6.8604
α = 0.2 32.5341 13.1888 6.7384 3.5098 7.1625
α = 0.3 33.0379 13.393 6.8427 3.5641 6.819

Aspiration level = r5%
α = 0.1 32.0348 12.9864 6.635 3.4559 7.5551
α = 0.2 32.7841 13.2901 6.7902 3.5367 7.3296
α = 0.3 33.178 13.4498 6.8717 3.5792 6.8598

Aspiration level = r10%
α = 0.1 33.472 13.569 6.9326 3.6109 9.0088
α = 0.2 33.4949 13.5783 6.9374 3.6134 7.2535
α = 0.3 33.5175 13.5874 6.9421 3.6159 6.9609

This table compares the risk aversion coefficient of the BPTCPT optimal portfolio to the risk avers
portfolio. The probability of failure (α) to reach the aspiration level takes the value 0.1, 0.2 and
(2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3 years (rS &P); (4) an
of 10% (r10 %). γCPT is the risk aversion coefficient of the BPTCPT optimal portfolio. γmv is the risk a
minimumvariance portfolio return, plus an annualized return of x %.γS &P represents the risk ave
the S&P 500 return.
7. Conclusion

This study aims to empirically select the optimal portfolio of the
Behavioral Portfolio Theory (BPT) developed by Shefrin and Statman
CPT γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γCPT

Panel B: Short sales allowed

47.9916 19.455 9.9399 5.1773 9.6163
53.7829 21.8027 11.1394 5.8021 10.0211
54.9865 22.2906 11.3886 5.9319 10.4282

47.7906 19.3735 9.8983 5.1556 9.717
53.7316 21.7819 11.1287 5.7966 10.0275
54.9993 22.2958 11.3913 5.9333 10.4438

47.5005 19.2559 9.8382 5.1243 10.6873
53.5618 21.7131 11.0936 5.7782 10.347
55.0464 22.3149 11.4011 5.9384 10.4383

48.1358 19.5134 9.9698 5.1929 9.4776
53.9567 21.8731 11.1754 5.8208 10.3155
55.0176 22.3032 11.3951 5.9353 10.4347

48.01 19.4624 9.9437 5.1793 9.7701
53.7404 21.7854 11.1306 5.7975 10.0246
54.9979 22.2952 11.391 5.9332 10.4765

48.6202 19.7098 10.0701 5.2451 10.1019
53.6014 21.7291 11.1018 5.7825 10.1343
55.0371 22.3111 11.3991 5.9374 10.5281

ion coefficients of other portfolios such as the minimum variance portfolio or the S&P 500
0.3. The different values for the aspiration level are: (1) the long-term risk-free rate (rST);
annualized rate of 1% (r1 %); (5) an annualized rate of 5% (r5 %); and, (6) an annualized rate
version coefficient of theMV efficient portfoliowith an expected return that is equal to the
rsion coefficient of theMV efficient portfoliowith an expected return that is equal to the of
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(2000). We compare the BPT portfolio to portfolios chosen by
Markowitz investors. Simulations are run using U.S. stock prices from
the CRSP database for the 1995–2011 period. We show that in 70% of
cases, the BPT optimal portfolio is located on the MV efficient frontier.
This echoes recent studies (Das et al., 2004; Levy and Levy, 2004; Levy
et al., 2012) that also underline the coincidence of MVT and BPT-like
models. The new contribution of our study lies in the fact that we empir-
ically compare the asset allocations generated by BPT and MVT without
restrictions. We do not make any assumption about the distribution of
returns, allow for short sales and take all the features of BPT into consid-
eration. This study not only shows that the BPT optimal portfolio tends
to be efficient, but also provides empirical evidence that this portfolio
is always characterized by a high level of risk, high returns and a positive
skewness. Our results also indicate the absence of the BPT optimal
portfolio during periods of financial crises. The BPT portfolio is therefore
chosen by investors who exhibit risk-seeking behavior and are attracted
by potential high gains. However,when potential losses are too high, the
safety-first constraint leads investors to refrain from selecting any
portfolio. This result underlines a weakness of the BPT model. Do
investors really exit the market when the safety-first constraint is not
met? This result warrants further extended research. Finally, we provide
empirical evidence that efficient BPT portfolios are always located on
the upper right of the MV frontier. Therefore, even if the BPT optimal
portfolio is often located on theMV frontier, it will not be chosen by typ-
ical MV investors since it is associated with an extremely low degree of
risk aversion. It follows that MVT and BPT do not lead to the same
asset allocation: MV investors with usual levels of risk aversion would
not invest in the BPT optimal portfolio.
Appendix A. Cumulative prospect theory

The Cumulative Prospect Theory (CPT) is based on four main observations.

(1) Investors use decision weights instead of probabilities, and overweight probabilities of extreme events.
(2) As in the Expected Utility Theory, investors determine the subjective value of each outcome via a value function. However, under CPT, utility is

derived from changes in wealth, relative to a reference point with respect to which gains and losses are defined.
(3) Sensitivity with respect to the reference point mentioned in (2) decreases and individuals are loss averse.
(4) Experimental evidence has established a fourfold pattern of risk attitudes: risk aversion for most gains and low probability losses, and risk

seeking for most losses and low probability gains.

Under CPT, a prospect X = ((xi, pi), i = − m, … n) is evaluated through a valuation function. This function is defined as follows:

V Xð Þ ¼ V Xþ� �þ V X−ð Þ; ðA:1Þ

where X+ = max(X; 0) and X− = min(X; 0).
We set
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where v is a strictly increasing value function definedwith respect to a reference point x0 satisfying v(x0)= v(0)=0, andwithw+(0)=0=w−(0) and
w+(1) = 1= w−(1).

The functional form for the value function v, proposed by Tversky and Kahneman (1992), is given by

v xð Þ ¼ xα if x N 0
−λ −xð Þβ if x b 0

� 
: ðA:3Þ

For 0 b α b 1 and 0 b β b 1 the value function v is concave over gains and convex over losses. The parameter λ determines the degree of loss
aversion (Köbberling and Wakker, 2005). Based on experimental evidence, Tversky and Kahneman (1992) estimated the values of the parameters
α, β and λ. They found α = β = 0.88 and λ = 2.25.

Tversky and Kahneman (1992) proposed the following functional form for the weighting function w

wþ pð Þ ¼ pγþ

pγþ þ 1−pð Þγþ� �1=γþ ðA:4Þ

w− pð Þ ¼ pγ−

pγ− þ 1−pð Þγ−� �1=γ− : ðA:5Þ

For γ b 1, this form integrates the overweighting of low probabilities and the greater sensitivity to changes in probabilities for extremely low and
extremely high probabilities. The weighting function is concave near 0 and convex near 1. Tversky and Kahneman (1992) estimated the parameters
γ+ and γ− as 0.61 and 0.69 respectively.
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Appendix B. Proof of Eq. (22)

Eq. (22) gives

e� X2 ¼ 1
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It follows that Eq. (22) can be written as
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Appendix C. Robustness tests — tables
Table C.1
Stock selection tilted toward large capitalization stocks — proportion of simulations for which the BPT optimal portfolio is MV efficient.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.7180 0.7228 0.7049 0.7139 0.7280 0.7124
α = 0.2 0.7452 0.7464 0.7418 0.7298 0.7407 0.7342
α = 0.3 0.7338 0.7376 0.7304 0.7261 0.7337 0.7393

Panel B: Short sales allowed
α = 0.1 0.7592 0.7628 0.7641 0.7409 0.7619 0.7956
α = 0.2 0.7151 0.7191 0.7228 0.7068 0.7162 0.7339
α = 0.3 0.6658 0.6672 0.6654 0.6608 0.6678 0.6793
For this table, the stock selection process was tilted in favor of large capitalization stocks. This table provides the proportion of simulations for
which the BPT optimal portfolio isMV efficient. The probability of failure (α) to reach the aspiration level takes the value 0.1, 0.2 and 0.3. The different
values for the aspiration level are: (1) the long-term risk-free rate (rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past
3 years (rS&P); (4) an annualized rate of 1% (r1 %); (5) an annualized rate of 5% (r5 %); and, (6) an annualized rate of 10% (r10 %). The total number of
simulations is 4,012. For each simulation, the BPT optimal portfolio is selected from a sample of 100,000 portfolios.
Table C.2
Stock selection tilted toward large capitalization stocks — proportion of simulations for which the BPTCPT optimal portfolio is MV efficient.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.7460 0.7510 0.7371 0.7362 0.7628 0.7582
α = 0.2 0.7826 0.7803 0.7912 0.7750 0.7787 0.7652
α = 0.3 0.7952 0.7979 0.7894 0.7950 0.7958 0.7893

Panel B: Short sales allowed
α = 0.1 0.787 0.7948 0.7866 0.7736 0.7944 0.8149
α = 0.2 0.7721 0.7714 0.779 0.7713 0.7701 0.7771
α = 0.3 0.7615 0.7614 0.7622 0.7602 0.7619 0.7605
For this table, the stock selection process was tilted in favor of large capitalization stocks. This table provides the proportion of simulations for
which the BPTCPT optimal portfolio is MV efficient. The probability of failure (α) to reach the aspiration level takes the value 0.1, 0.2 and 0.3. The dif-
ferent values for the aspiration level are: (1) the long-term risk-free rate (rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the
past 3 years (rS&P); (4) an annualized rate of 1% (r1 %); (5) an annualized rate of 5% (r5 %); and, (6) an annualized rate of 10% (r10 %). The total number
of simulations is 4,012. For each simulation, the BPTCPT optimal portfolio is selected from a sample of 100,000 portfolios.



Table C.3
Stock selection tilted toward large capitalization stocks — proportion of simulations for which the BPT optimal portfolio is the same portfolio as the BPTCPT optimal portfolio.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.8917 0.9017 0.8772 0.8793 0.907 0.8807
α = 0.2 0.6851 0.7098 0.7006 0.6682 0.6989 0.7303
α = 0.3 0.4938 0.497 0.5032 0.4832 0.4981 0.5203

Panel B: Short sales allowed
α = 0.1 0.8836 0.8881 0.8941 0.871 0.8836 0.9092
α = 0.2 0.6658 0.6751 0.6695 0.6533 0.6721 0.6926
α = 0.3 0.5202 0.5259 0.5148 0.5165 0.5245 0.5393
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For this table, the stock selection process was tilted in favor of large capitalization stocks. This table provides the proportion of simulations for
which the BPT optimal portfolio is identical to the BPTCPT optimal portfolio. The probability of failure (α) to reach the aspiration level takes the
value 0.1, 0.2 and 0.3. The different values for the aspiration level are: (1) the long-term risk-free rate (rST); (2) the long-term risk-free rate (rLT);
(3) the S&P 500 return over the past 3 years (rS&P) (4) an annualized rate of 1% (r1%); (5) an annualized rate of 5% (r5%); and, (6) an annualized
rate of 10% (r10%). The total number of simulations is 4,012. For each simulation, the BPT and the BPTCPT optimal portfolios are selected from a sample
of 100,000 portfolios.
Table C.4
Stock selection tilted toward large capitalization stocks — BPT optimal portfolio: risk aversion coefficient.

γmv + 2 %/γBPT γmv + 5 %/γBPT γmv + 10 %/γBPT γmv + 20 %/γBPT γS &P/γBPT γmv + 2 %/γBPT γmv + 5 %/γBPT γmv + 10 %/γBPT γmv + 20 %/γBPT γS &P/γBPT

Panel A: Short sales forbidden Panel B: Short sales allowed

Aspiration level = rST
α = 0.1 30.8631 12.5114 6.3923 3.3295 8.1246 44.2333 17.9314 9.1615 4.7719 19.5799
α = 0.2 32.6765 13.2465 6.7679 3.5251 11.3398 50.7531 20.5745 10.5118 5.4752 18.1548
α = 0.3 35.298 14.3092 7.3108 3.8079 11.6683 52.9164 21.4514 10.9599 5.7086 17.3212

Aspiration level = rLT
α = 0.1 31.3068 12.6912 6.4842 3.3774 8.3886 44.4365 18.0138 9.2036 4.7938 20.3019
α = 0.2 32.8917 13.3337 6.8124 3.5483 12.2952 50.682 20.5457 10.4971 5.4676 17.785
α = 0.3 35.3986 14.35 7.3317 3.8188 11.7273 52.8518 21.4252 10.9465 5.7016 17.334

Aspiration level = rS&P
α = 0.1 30.3832 12.3168 6.2929 3.2777 9.3899 42.6077 17.2725 8.8248 4.5965 20.7391
α = 0.2 31.6261 12.8207 6.5503 3.4118 10.2474 50.2005 20.3504 10.3974 5.4156 17.4414
α = 0.3 34.1092 13.8273 7.0646 3.6797 11.4164 53.0464 21.5041 10.9868 5.7226 17.4549

Aspiration level = r1%
α = 0.1 29.8715 12.1094 6.1869 3.2225 7.9733 44.3594 17.9825 9.1876 4.7855 18.8621
α = 0.2 32.8571 13.3197 6.8053 3.5446 12.1462 50.9266 20.6448 10.5478 5.4939 18.2075
α = 0.3 35.3136 14.3155 7.3141 3.8096 11.6322 52.9308 21.4573 10.9629 5.7102 17.3321

Aspiration level = r5%
α = 0.1 31.126 12.6180 6.4467 3.3579 8.3672 44.6015 18.0807 9.2377 4.8116 20.4758
α = 0.2 32.9852 13.3717 6.8318 3.5584 12.3758 50.6484 20.5320 10.4902 5.4639 17.793
α = 0.3 35.4063 14.3531 7.3333 3.8196 11.7551 52.8736 21.4341 10.9510 5.7040 17.3486

Aspiration level = r10%
α = 0.1 33.5932 13.6181 6.9577 3.6240 10.5249 45.6579 18.5089 9.4565 4.9256 24.0178
α = 0.2 33.7202 13.6696 6.9840 3.6377 12.1787 50.5340 20.4856 10.4665 5.4516 18.2019
α = 0.3 35.5365 14.4059 7.3602 3.8337 11.8259 52.9117 21.4495 10.9589 5.7081 17.5394
For this table, the stock selection process was tilted in favor of large capitalization stocks. This table compares the risk aversion coefficient of the
BPT optimal portfolio to the risk aversion coefficients of other portfolios such as theminimum variance portfolio or the S&P 500 portfolio. The prob-
ability of failure (α) to reach the aspiration level takes the value 0.1, 0.2 and 0.3. The different values for the aspiration level are: (1) the long-term
risk-free rate (rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3 years (rS&P); (4) an annualized rate of 1% (r1%); (5) an
annualized rate of 5% (r5%); and, (6) an annualized rate of 10% (r10%). γBPT is the risk aversion coefficient of the BPT optimal portfolio. γmv is the risk
aversion coefficient of the MV efficient portfolio with an expected return that is equal to the minimum variance portfolio return, plus an annualized
return of x%. γS&Prepresents the risk aversion coefficient of the MV efficient portfolio with an expected return that is equal to the of the S&P 500
return.
Table C.5
Stock selection tilted toward large capitalization stocks — BPTCPT optimal portfolio: risk aversion coefficient.

γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γCPT γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γCPT

Panel A: Short sales forbidden Panel B: Short sales allowed

Aspiration level = rST
α = 0.1 30.5982 12.404 6.3374 3.3009 7.9835 43.823 17.7651 9.0765 4.7276 19.5175
α = 0.2 31.0086 12.5704 6.4224 3.3452 10.9814 48.5446 19.6792 10.0544 5.237 17.3922
α = 0.3 31.769 12.8786 6.5799 3.4272 10.9102 49.368 20.013 10.225 5.3258 16.5193



Table C.6
Alternative reference point κ (S&P 500 return) - Proportion of simulations for which the BPTCPT optimal portfolio is MV efficient.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.7601 0.7593 0.7434 0.7664 0.762 0.7519
α = 0.2 0.7823 0.7714 0.7728 0.7773 0.7743 0.768
α = 0.3 0.7775 0.7865 0.7746 0.7837 0.7883 0.7876

Panel B: Short sales allowed
α = 0.1 0.7939 0.7888 0.8133 0.7927 0.7911 0.8256
α = 0.2 0.7805 0.782 0.78 0.7823 0.7825 0.7919
α = 0.3 0.7591 0.7609 0.7628 0.7571 0.7603 0.7642

Table C.5 (continued)

γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γCPT γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γCPT

Panel A: Short sales forbidden Panel B: Short sales allowed

Aspiration level = rLT
α = 0.1 31.0912 12.6039 6.4395 3.3541 8.2434 44.0349 17.851 9.1204 4.7505 20.2352
α = 0.2 31.299 12.6881 6.4826 3.3765 11.9583 48.5162 19.6677 10.0485 5.2339 17.0001
α = 0.3 31.898 12.9309 6.6066 3.4412 10.9857 49.3097 19.9893 10.2129 5.3195 16.5213

Aspiration level = rS&P
α = 0.1 30.0595 12.1856 6.2258 3.2428 8.6535 42.1849 17.101 8.7372 4.5509 20.694
α = 0.2 30.124 12.2117 6.2392 3.2498 10.5765 48.0259 19.4689 9.947 5.181 16.8638
α = 0.3 30.7121 12.4502 6.361 3.3132 10.6974 49.4157 20.0323 10.2348 5.3309 16.4933

Aspiration level = r1%
α = 0.1 29.5807 11.9915 6.1267 3.1912 7.9288 43.9104 17.8005 9.0946 4.737 18.7479
α = 0.2 31.11 12.6115 6.4434 3.3561 11.5133 48.6276 19.7128 10.0716 5.2459 17.4267
α = 0.3 31.7289 12.8624 6.5716 3.4229 10.8717 49.3978 20.025 10.2311 5.329 16.5216

Aspiration level = r5%
α = 0.1 30.9347 12.5404 6.4071 3.3372 8.2303 44.1994 17.9177 9.1545 4.7682 20.411
α = 0.2 31.3737 12.7184 6.498 3.3846 12.0512 48.4642 19.6466 10.0378 5.2283 17.0186
α = 0.3 31.9263 12.9424 6.6125 3.4442 10.9932 49.3282 19.9968 10.2167 5.3215 16.5493

Aspiration level = r10%
α = 0.1 33.2325 13.4719 6.883 3.5851 10.4508 45.2958 18.3621 9.3815 4.8865 23.9635
α = 0.2 32.2648 13.0796 6.6826 3.4807 11.0331 48.4125 19.6256 10.0271 5.2227 17.4329
α = 0.3 32.1673 13.0401 6.6624 3.4702 11.0276 49.3682 20.0131 10.225 5.3258 16.6054
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For this table, the stock selection process was tilted in favor of large capitalization stocks. This table compares the risk aversion coefficient of the
BPTCPT optimal portfolio to the risk aversion coefficients of other portfolios such as the minimum variance portfolio or the S&P 500 portfolio. The
probability of failure (α) to reach the aspiration level takes the value 0.1, 0.2 and 0.3. The different values for the aspiration level are: (1) the long-
term risk-free rate (rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3 years (rS&P); (4) an annualized rate of 1%
(r1%); (5) an annualized rate of 5% (r5%); and, (6) an annualized rate of 10% (r10%). γCPT is the risk aversion coefficient of the BPTCPT optimal portfolio.
γmv is the risk aversion coefficient of theMV efficient portfoliowith an expected return that is equal to theminimumvarianceportfolio return, plus an
annualized return of x%. γS&P represents the risk aversion coefficient of the MV efficient portfolio with an expected return that is equal to the of the
S&P 500 return.
In this table, we use the S&P 500 return over the past 3 years as reference point for co r1% nstructing the utility over gain and losses. This table
provides the proportion of simulations for which the BPTCPT optimal portfolio is MV efficient. The probability of failure (α) to reach the aspiration
level takes the value 0.1, 0.2 and 0.3. The different values for the aspiration level are: (1) the long-term risk-free rate (rST); (2) the long-term risk-
free rate (rLT); (3) the S&P 500 return over the past 3 years (rS&P); (4) an annualized rate of 1% (r1%); (5) an annualized rate of 5% (r5%); and,
(6) an annualized rate of 10% (r10%). The total number of simulations is 4012. For each simulation, the BPTCPT optimal portfolio is selected from a sam-
ple of 100,000 portfolios.
Table C.7
Alternative reference point κ (S&P 500 return)— proportion of simulations for which the BPT optimal portfolio is the same portfolio as the BPTCPT optimal portfolio.

Aspiration level rST rLT rS&P r1% r5% r10%

Panel A: Short sales forbidden
α = 0.1 0.8896 0.8956 0.8872 0.8745 0.8898 0.9132
α = 0.2 0.7069 0.7178 0.7218 0.6864 0.712 0.7486
α = 0.3 0.5042 0.5071 0.516 0.4931 0.5115 0.5403

Panel B: Short sales allowed
α = 0.1 0.9033 0.9012 0.8956 0.8884 0.9061 0.9108
α = 0.2 0.6728 0.6786 0.6838 0.6625 0.675 0.7
α = 0.3 0.5328 0.5381 0.5326 0.5311 0.539 0.5513
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In this table, we use the S&P 500 return over the past 3 years as reference point for constructing the utility over gain and losses. This table provides
the proportion of simulations forwhich the BPT optimal portfolio is the sameportfolio as the BPTCPT optimal portfolio. The probability of failure (α) to
reach the aspiration level takes the value 0.1, 0.2 and 0.3. The different values for the aspiration level are: (1) the long-term risk-free rate (rST); (2) the
long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3 years (rS&P) (4) an annualized rate of 1% (r1%); (5) an annualized rate of 5% (r5%);
and, (6) an annualized rate of 10% (r10%). The total number of simulations is 4012. For each simulation, the BPT and the BPTCPT optimal portfolios are
selected from a sample of 100,000 portfolios.
Table C.8
Alternative reference point κ (S&P 500 return)— BPTCPT optimal portfolio: risk aversion coefficient.

γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γCPT γmv + 2 %/γCPT γmv + 5 %/γCPT γmv + 10 %/γCPT γmv + 20 %/γCPT γS &P/γCPT

Panel A: Short sales forbidden Panel B: Short sales allowed

Aspiration level = rST
α = 0.1 31.9819 12.9649 6.624 3.4502 7.4898 47.9909 19.4547 9.9397 5.1772 9.5991
α = 0.2 32.48 13.1668 6.7272 3.5039 7.2504 53.7495 21.7891 11.1324 5.7985 10.0123
α = 0.3 33.0455 13.3961 6.8443 3.5649 6.7961 54.9332 22.269 11.3776 5.9262 10.4219

Aspiration level = rLT
α = 0.1 32.3919 13.1311 6.7089 3.4944 7.908 47.7848 19.3711 9.897 5.155 9.6966
α = 0.2 32.7368 13.271 6.7804 3.5316 7.2777 53.6996 21.7689 11.1221 5.7931 10.0239
α = 0.3 33.1864 13.4532 6.8735 3.5801 6.8418 54.944 22.2734 11.3798 5.9273 10.4198

Aspiration level = rS&P
α = 0.1 32.2859 13.0882 6.687 3.483 8.4038 47.4583 19.2388 9.8294 5.1198 10.6823
α = 0.2 31.5528 12.791 6.5351 3.4039 7.1899 53.5257 21.6984 11.0861 5.7743 10.3498
α = 0.3 32.5265 13.1857 6.7368 3.509 6.7163 55.014 22.3017 11.3943 5.9349 10.4336

Aspiration level = r1%
α = 0.1 31.0647 12.5931 6.434 3.3513 6.8178 48.1349 19.5131 9.9696 5.1928 9.4638
α = 0.2 32.613 13.2208 6.7547 3.5183 7.1703 53.9133 21.8556 11.1664 5.8162 10.3062
α = 0.3 33.1101 13.4223 6.8577 3.5719 6.8258 54.963 22.2811 11.3838 5.9294 10.4288

Aspiration level = r5%
α = 0.1 32.0306 12.9847 6.6341 3.4555 7.5274 48.0031 19.4597 9.9423 5.1786 9.7507
α = 0.2 32.8543 13.3186 6.8047 3.5443 7.3367 53.711 21.7736 11.1245 5.7943 10.0211
α = 0.3 33.2495 13.4788 6.8865 3.5869 6.8641 54.934 22.2693 11.3778 5.9263 10.4521

Aspiration level = r10%
α = 0.1 33.4624 13.5651 6.9306 3.6099 9.0086 48.6202 19.7098 10.0701 5.2451 10.0831
α = 0.2 33.5524 13.6016 6.9493 3.6196 7.2496 53.5961 21.727 11.1007 5.7819 10.137
ss = 0.3 33.563 13.6059 6.9515 3.6208 6.9318 54.9907 22.2923 11.3895 5.9324 10.5045
In this table, we use the S&P 500 return over the past 3 years as reference point for constructing the utility over gain and losses. This table com-
pares the risk aversion coefficient of the BPTCPT optimal portfolio to the risk aversion coefficients of other portfolios such as the minimum variance
portfolio or the S&P500 portfolio. The probability of failure (α) to reach the aspiration level takes the value 0.1, 0.2 and 0.3. The different values for the
aspiration level are: (1) the long-term risk-free rate (rST); (2) the long-term risk-free rate (rLT); (3) the S&P 500 return over the past 3 years (rS&P);
(4) an annualized rate of 1% (r1%); (5) an annualized rate of 5% (r5%); and, (6) an annualized rate of 10% (r10%). γCPT is the risk aversion coefficient of
the BPTCPT optimal portfolio. γmv is the risk aversion coefficient of the MV efficient portfolio with an expected return that is equal to the minimum
variance portfolio return, plus an annualized return of x%. γS&P represents the risk aversion coefficient of the MV efficient portfolio with an expected
return that is equal to the of the S&P 500 return.
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